
On the Fairness of Finite Boolean Functions
Nikolaos Makriyannis

Departament de Tecnologies de la Informació i les Comunicacions
Universitat Pompeu Fabra

Email: nikolaos.makriyannis@upf.edu

Abstract—Let f be a finite two-input Boolean function. Assume
that two parties, P1 and P2, holding inputs x and y respectively,
wish to compute f(x, y) by means of a secure two-party protocol.
We say that the parties compute f with complete fairness (or that
f is fair) if, whenever one of the parties learns the desired output,
then both of them do.

In [1], Cleve showed that in the presence of an adversary,
it is impossible for two parties to agree on a random bit,
provided that the output of each party is always well defined. The
implication is that completely fair coin-tossing protocols do not
exist in the presence of a dishonest majority and, furthermore,
functions that can be used for coin-tossing (like XOR) are
not computable with complete fairness. Since then there has
been limited investigation on the subject. In [2] however, the
authors show that complete fairness is in fact possible for certain
functions. In particular, they design a protocol that computes
Yao’s millionaire problem with complete fairness and they even
show that there exist functions with embedded XORs that are
computable with complete fairness.

In this paper, we generalize Cleve’s original result and provide
a new infinite family of finite two-input Boolean functions that
are not computable with complete fairness.

I. INTRODUCTION

The concept of fairness goes back to the early days of
modern cryptography. It first appears in relation to digital
signature exchange circa 1980 [3]. Quickly, researchers were
investigating fairness (and related notions) in the more general
two/multi-party computation framework. Regarding complete
fairness, Cleve’s paper [1], along with the negative result it
implies, seemed to have discouraged the cryptographic com-
munity from further exploring the subject. The first positive
result appears two decades later, when the authors of [2] show
that complete fairness can in fact be achieved for certain
functions.

In this paper we show a new negative result. Namely, we
will be proving the following claim.

Claim 1: Let f : X ×Y → {0, 1} be a finite function such
that for some p ∈ (0, 1), for all (x, y) ∈ X × Y ,

Pr[f(x, ·) = 0] = Pr[f(·, y) = 0] = p.

Then, in the presence of a dishonest majority, f is not
computable with complete fairness.

In fact, the claim follows by generalising Cleve’s result. We
show that two parties cannot agree on a single bit no matter
what the desired probability distribution of that bit is. To this
end, our work is organized in the following way:

• Section II introduces notation and necessary definitions.
• In Section III we generalize Cleve’s result for coin-tossing

by proving that general bit selection schemes are not fair.
• In Section IV we deduce that finite Boolean functions

that can be used for bit selection schemes are not fair.
• Section V provides some examples of functions that are

not computable with complete fairness.
• The final section contains a conclusion and a brief dis-

cussion about future work.

II. PRELIMINARIES

We begin with some notation and definitions. At the end
of this section we introduce the concept of fairness using the
standard ideal/real model approach from [4]. Note that most
of the material in this section can be found in [2].

Let n ∈ N denote the security parameter. A func-
tion µ(·) is negligible if it vanishes faster than any (pos-
itive) inverse-polynomial. A distribution ensemble X =
{X(a, n)}a∈Dn,n∈N is an infinite sequence of random vari-
ables indexed by Dn and n. Two distribution ensembles, X
and Y , are computationally indistinguishable if for every non-
uniform polynomial-time algorithm D, there exists a negligible
function µ such that for every a and n

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ µ(n).

Furthermore, we say that X and Y are statistically close if
for all a and n, the following sum is upper-bounded by a
negligible function in n:

1

2
·
∑
s

|Pr[X(a, n) = s]− Pr[Y (a, n) = s]|,

where s ranges over the support of either X(a, n) or Y (a, n).
We write X

c≡ Y when the ensembles are computationally
indistinguishable and X

s≡ Y when they are statistically close.
A two-party functionality F = {fn}n∈N, is a sequence of

random processes such that each fn maps pairs of inputs to
pairs of random variables (one for each party). The domain of
fn is denoted Xn × Yn and the output (f1

n, f
2
n). A two-party

protocol Π for computing a functionality F , is a polynomial-
time protocol such that on inputs x ∈ Xn and y ∈ Yn, the
joint distribution of the outputs of any honest execution of Π
is statistically close to fn(x, y) = (f1

n(x, y), f2
n(x, y)).

In particular, suppose that f1
n(x, y) = f2

n(x, y) = `, where
` is a single bit, and let a and b denote the output from an
execution of Π, of P1 and P2 respectively. Motivated by the

definitions of ε-consistency and bias in [1], for fixed p ∈ (0, 1),
define the following:

Definition 1: We say that protocol Π is p-consistent if there
exists ε > 0 such that Pr[a = b] ≥ max{p, 1− p}+ ε.

Definition 2: Define the p-bias towards 0 of ` to be
Pr[` = 0] − p. Similarly, define the p-bias towards 1 of `
to be Pr[` = 1] − 1 + p. Let the p-bias of ` be the modulus
of any of the two aforementioned values.

Let F = {fn}n∈N be a two-party functionality. Assume
there are two parties, P1 and P2, holding the same value 1n,
as well as (private) inputs x ∈ Xn and y ∈ Yn respectively.
Furthermore, assume there exists an adversary S that corrupts
one of the parties. Computing F in the ideal model amounts
to the following procedure:

1) P1 holds 1n and x, P2 holds 1n and y, adversary S
receives an auxiliary input z.

2) The honest party sends its input to a trusted party
T whereas the corrupted party sends any value of
S’s choice. Write (x′, y′) for the pair sent to T . (We
assume that communication between T and the parties
is private.)

3) If x′ /∈ Xn or y′ /∈ Yn, then the trusted party reassigns
the corresponding value to some default valid input and
sends f1

n(x′, y′; r) to P1 and f2
n(x′, y′; r) to P2, where

r is chosen uniformly at random.
4) The honest party outputs whatever T sent him, the cor-

rupted party outputs nothing and S outputs an arbitrary
(probabilistic polynomial-time computable) function of
its view.

Define VIEWideal
F,S(z)(x, y, n) and OUTideal

F,S(z)(x, y, n) to be the
random variables consisting of the view of adversary S and
the output of the honest party, respectively. Similarly, for
any two-party protocol Π for computing F , let A be an
adversary in the real model corrupting one of the parties
and define VIEWreal

Π,A(z)(x, y, n) and OUTreal
Π,A(z)(x, y, n) to

be the random variables consisting of the view of adversary
A and the output of the honest party, respectively. Finally,
let Ωreal

Π,A(z)(x, y, n) and Ωideal
F,S(z)(x, y, n) denote the random

variables consisting of the adversary’s view and the honest
party’s output in the real and ideal model respectively.

Definition 3: Using the notation above, we say that Π
computes F with complete fairness if for every non-uniform
probabilistic polynomial-time adversary A in the real model,
there exists a non-uniform probabilistic polynomial-time ad-
versary S in the ideal model such that:{

Ωreal
Π,A(z)(x, y, n)

}
x,y,z,n

c≡
{

Ωideal
F,S(z)(x, y, n)

}
x,y,z,n

. (1)

To give some intuition on the above definition, note that the
ideal model corresponds to the best case scenario in terms
of privacy and security. Thus, informally, what equation (1)
actually says is that the adversary has access to the same
information in both worlds and, furthermore, the adversary’s
influence on the honest party’s output is the same in both
worlds. In other words, an execution of a protocol that
computes a functionality with complete fairness, essentially

amounts to computing the functionality by means of a trusted
party in the ideal model.

III. FAIRNESS OF BIT SELECTION SCHEMES

In this section, we prove that bit selection schemes are not
computable with complete fairness. In particular, using the
protocol of [1], we show that if two parties wish to com-
pute a (common) single bit according to some predetermined
probability distribution, then there exists an adversary that can
influence the honest party’s output in a way that cannot be
reproduced in the ideal model. Note that Cleve’s original result
is a special case of what follows with p = 1/2.

Formally, suppose that parties P1 and P2 wish to compute a
single bit ` such that Pr[` = 0] = p ∈ (0, 1). To this end, they
execute Π, an r(n)-round protocol, where r(n) is bounded by
some polynomial. Without loss of generality, we describe Π
as follows:

• Before the protocol starts, P1 and P2 compute backup
bits a1 and b0, respectively.

• At round i, party P1 sends a message (string of bits) to
P2 who computes a backup bit bi. Party P2 then sends a
message to P1 who computes a backup bit ai+1.

• At the end of the protocol, or if communication fails,
parties output the last bit they successfully constructed.

We refer to such a protocol as a bit selection scheme.
Theorem 1: Suppose that Π is a p-consistent two-party

bit selection scheme. Then there exists an adversary with a
strategy such that the p-bias of the honest party’s output is at
least

ε

4r(n) + 1
,

for some ε > 0.
Proof: We define 4r(n) + 1 adversaries

A, A1
1,0, . . . A1

r(n),0, A
1
1,1, . . . A1

r(n),1,

A2
1,0, . . . A2

r(n),0, A
2
1,1, . . . A2

r(n),1

with the following quitting strategies:

• Adversary A instructs P1 to quit immediately (no infor-
mation is exchanged).

• Adversary Aj
i,` instructs Pj to proceed normally until

round i − 1. At round i, if the corrupted party’s backup
bit (ai or bi) is equal to ` then proceed to the next round
and quit. Otherwise quit at round i.

Next, let δ and δji,` denote the p-bias of the honest party’s
output under the attack of A and Aj

i,`, respectively. From the
definition of p-bias, we deduce the following lower bounds:

δ ≥ max{Pr[b0 = 0],Pr[b0 = 1]} −max{p, 1− p},
δ1
i,0 ≥ Pr[ai = 0 ∧ bi = 0] + Pr[ai = 1 ∧ bi−1 = 0]− p,
δ1
i,1 ≥ Pr[ai = 1 ∧ bi = 1] + Pr[ai = 0 ∧ bi−1 = 1]− 1 + p,

δ2
i,0 ≥ Pr[bi = 0 ∧ ai+1 = 0] + Pr[bi = 1 ∧ ai = 0]− p,
δ2
i,1 ≥ Pr[bi = 1 ∧ ai+1 = 1] + Pr[bi = 0 ∧ ai = 1]− 1 + p.

Let ∆ denote the average of the above values. After simplifi-
cation, we deduce that

(4r(n) + 1)∆ ≥ δ + Pr[b0 6= a1] + Pr[br(n) = ar(n)+1]− 1.
(2)

Knowing that a1 and b0 are independent variables (no infor-
mation is exchanged), notice that

Pr[b0 6= a1] = 1− Pr[b0 = a1]

= 1− Pr[a1 = 0]Pr[b0 = 0]

− Pr[a1 = 1]Pr[b0 = 1]

≥ 1−max{Pr[b0 = 0],Pr[b0 = 1]}.

Plug the above expression into equation (2), use the p-
consistency of Π and deduce that there exists ε > 0 such
that

∆ ≥ ε

4r(n) + 1
.

We are now going to show how the previous theorem relates
to the notion of fairness. From now on the security parameter
as well as auxiliary inputs will be implicit in the discussion.
Consider the following ideal protocol:

1) The honest party sends an arbitrary value to trusted party
T . The corrupted party sends a value of adversary A’s
choice.

2) After receiving the messages, T computes a bit ` such
that Pr[` = 0] = p and sends ` to both parties.

3) The honest party outputs `, the corrupted party out-
puts nothing and A outputs an arbitrary (probabilistic
polynomial-time computable) function of its view.

We see that no matter what the adversary does, the p-bias
of ` is always 0. Hence, by Theorem 1, for any p-consistent
real-world protocol that emulates the above scheme, there
exists a quitting strategy such that the p-bias of the honest
party’s output is non-negligible. We conclude that bit selection
schemes are not fair.

Now, let f : X × Y → {0, 1} be a finite function with the
following property: For all (x, y) ∈ X × Y,

Pr[f(x, ·) = 0] = Pr[f(·, y) = 0] = p. (3)

For a function f satisfying equation (3), define the ideal∗

model for computing f to consist in the following procedure:

1) The honest party sends a value chosen uniformly at
random from its input domain. The corrupted party sends
a value of adversary A’s choice.

2) After receiving the inputs, say x′ and y′ (if the values
are not in the appropriate domains reassign), T sends
f(x′, y′) to both parties.

3) The honest party outputs whatever T sent him, the cor-
rupted party outputs nothing and A outputs an arbitrary
(probabilistic polynomial-time computable) function of
its view.

Assume P1 is honest (the case where P2 is honest is identical)
and denote a its output. Then

Pr[a = 0] = Pr[f(x, y) = 0]

=
∑
z∈X

Pr[f(z, y) = 0] · Pr[x = z]

=
∑
z∈X

p

|X|
= p.

Once again, the p-bias of the honest party’s output is trivial.
Noting that the ideal∗ model for computing f is a variation
of the ideal model for bit selection schemes, we deduce
that, provided the honest party chooses his input randomly,
functions that satisfy expression (3) are not computable with
complete fairness.

IV. FAIRNESS OF FINITE BOOLEAN FUNCTIONS

In this section we show that, as functionalities, finite two-
input Boolean functions satisfying equation (3) are not com-
putable with complete fairness i.e. even when the parties’
inputs are predetermined. Assume the contrary and let Π be
a two-party protocol for computing f with complete fairness.
In other words, for every (x, y) ∈ X×Y , for every adversary
A in the real model, there exists an adversary S in the ideal
model such that{

Ωreal
Π,A(x, y)

}
x,y

c≡
{

Ωideal
f,S (x, y)

}
x,y
,

where the Ω’s are the probability distributions from Definition
3. Define real protocol Π∗ to be the same as Π except that
before engaging into any kind of computation or communica-
tion, the parties are instructed to choose an input uniformly at
random from their input domains. We claim that Π∗ is now a
completely fair bit selection scheme.

Indeed, let A and S denote adversaries in the real and ideal∗

model respectively. Furthermore, let Ωreal
Π∗,A and Ωideal∗

f,S denote
the random variables consisting of the adversary’s view and the
honest party’s output in the real and ideal∗ model respectively.
We write Ωreal

Π∗,A(x, y) and Ωideal∗

f,S (x, y) to denote that P1 and
P2 chose inputs x and y respectively. Finally, let D be a non-
uniform polynomial-time algorithm. Then

|Pr[D(Ωreal
Π∗,A) = 1]− Pr[D(Ωideal∗

f,S) = 1]|

=
∣∣∣ ∑

(x,y)∈X×Y

Pr[(x, y)]
(
Pr[D(Ωreal

Π∗,A(x, y)) = 1]

− Pr[D(Ωideal∗

f,S (x, y)) = 1]
)∣∣∣

≤
∑

(x,y)∈X×Y

1

|X| · |Y |

∣∣∣Pr[D(Ωreal
Π∗,A(x, y)) = 1]

− Pr[D(Ωideal∗

f,S (x, y)) = 1]
∣∣∣ (4)

Since we assume that P1 and P2 hold inputs x and y
respectively, variables Ωreal

Π∗,A(x, y) and Ωideal∗

f,S (x, y) boil down
to Ωreal

Π,A(x, y) and Ωideal
f,S (x, y). Consequently, using the as-

sumption that Π is fair, there exists an adversary S in the
ideal model such that the expression

|Pr[D(Ωreal
Π,A(x, y)) = 1]− Pr[D(Ωideal

f,S (x, y)) = 1]|

is upper-bounded by a negligible function. Thus, after simpli-
fication, expression (4) admits the same bound. Hence Π∗ is
a completely fair bit selection scheme and the claim is now
proven.

Theorem 2: Let f : X × Y → {0, 1} be a finite function
such that for some p ∈ (0, 1), for all (x, y) ∈ X × Y,

Pr[f(x, ·) = 0] = Pr[f(·, y) = 0] = p.

Then f is not computable with complete fairness.

V. EXAMPLES

We provide a few examples of functions that satisfy the
hypothesis of the previous theorem. First, a small lemma.

Lemma 1: Let f : X × Y → {0, 1} be a finite function
such that for all (x, y) ∈ X × Y ,

Pr[f(x, ·) = 0] = p

Pr[f(·, y) = 0] = q

Then
p = q.

Proof:

Pr[f(x, y) = 0] =
∑
z∈X

Pr[f(z, y) = 0]Pr[x = z]

=
∑
z∈X

p

|X|
= p,

=
∑
z∈Y

Pr[f(x, z) = 0]Pr[y = z]

=
∑
z∈Y

q

|Y |
= q.

Without loss of generality, suppose that X = {1, . . . , kX}
and Y = {1, . . . , kY }. We describe f as a kX × kY logical
matrix, where entry (i, j) corresponds to value f(i, j). Using
Lemma 1 and Theorem 2, we deduce that if the rows (resp.
columns) of a given Boolean matrix have equal weight,
then the associated function is not computable with complete
fairness. In particular, the XOR function which has matrix
representation (

1 0
0 1

)
is not computable with complete fairness. More generally, any
function whose associated matrix is a permutation matrix is
not computable with complete fairness. Indeed, if P is a k×k
permutation matrix, then Pr[Pi,· = 1] = Pr[P·,j = 1] = 1/k.
Furthermore, the translation of any permutation matrix by the
all-1 matrix yields a matrix P ′ with the following property:

Pr[P ′i,· = 1] = Pr[P ′·,j = 1] =
k − 1

k
,

hence functions associated with such matrices are also not
computable with complete fairness. Finally, we provide a
family of matrices whose associated functions can be used
as coin-tossing functionalities.

Let k = 2k′, where k′ is odd, and consider vectors v1,
v2 ∈ Fk

2 such that

v1(i) =

{
1 if i ≤ k′,
0 otherwise.

v2(i) =

{
1 if i ≤ k′ − 1 or i = k′ + 1,

0 otherwise.

Furthermore, let v(s)
j be the vector obtained by shifting vj by

two positions downwards, s times. In particular, after one shift,
entry i of vj = v

(0)
j becomes entry i+ 2 modulo 2k′ of v(1)

j .
Finally, define Ck ∈ Fk×k

2 to be the matrix whose columns
are alternately v(s)

1 and v(s)
2 starting with s = 0 and ending at

s = k′ − 1. In particular, for k = 6, we have

C6 =


1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
0 1 1 1 0 0
0 0 1 0 1 1
0 0 0 1 1 1

 .

It is not hard to see that since k′ is odd, the columns/rows
of Ck have weight equal to k′ = k/2. Thus, the associated
functions can be used as coin-tossing functionalities and hence,
are not computable with complete fairness.

VI. CONCLUSION AND FUTURE WORK

In this paper, we showed that finite functions
f : X × Y → {0, 1} satisfying

∀(x, y) ∈ X × Y, Pr[f(x, ·) = 0] = Pr[f(·, y) = 0] = p,

for some p ∈ (0, 1), are not computable with complete
fairness. We generalized Cleve’s original result and we have
thus shown that, in the presence of a dishonest majority, there
are many more finite two-input Boolean functions which are
not fair. Previously, the theorem was only known to be true
for p = 1/2.

The ultimate goal would be to classify all finite-two input
Boolean functions with respect to fairness i.e. find a necessary
and sufficient condition for a given function to be computable
with complete fairness.

In [2], the authors show that if each party has exactly
two possible inputs, then there are essentially two possible
functions (up to fairness). These are the XOR operator and the
OR operator. They show that OR is fair and since XOR is not,
they obtain a classification of all such functions up to fairness.
Interestingly, using our negative result and the positive result
of [2], we can also classify up to fairness all-but-one functions
where each of the parties have exactly three possible inputs.

Still, we are very far from classifying all finite two-input
Boolean functions, let alone multiple-input non-deterministic
functionalities in general. Future steps towards this goal in-
clude:

1) Designing new simulation strategies and showing that
the protocol of [2] can be used to compute more
functions with complete fairness.

2) Designing new two-party protocols for computing fi-
nite Boolean functions and proving fairness under the
real/ideal model.

3) Extending the impossibility result of the present paper
to more functions.

It would also be interesting to explore these questions by
considering additional notions like partial fairness (see [5])
or rational fairness (see [6], [7]).

REFERENCES

[1] R. Cleve, “Limits on the security of coin flips when half the processors
are faulty (extended abstract),” in STOC, J. Hartmanis, Ed. ACM, 1986,
pp. 364–369.

[2] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell, “Complete fairness in
secure two-party computation,” J. ACM, vol. 58, no. 6, p. 24, 2011.

[3] S. Even and Y. Yacobi, “Relations among public key signature systems,”
Technion Israel Institute of Technology, Computer Science Department,
Tech. Rep. 175, 1980.

[4] O. Goldreich, Foundations of Cryptography: Basic Applications, ser.
Foundations of Cryptography. Cambridge University Press, 2004.

[5] S. D. Gordon and J. Katz, “Partial fairness in secure two-party com-
putation,” in EUROCRYPT, ser. Lecture Notes in Computer Science,
H. Gilbert, Ed., vol. 6110. Springer, 2010, pp. 157–176.

[6] A. Groce and J. Katz, “Fair computation with rational players,” Cryptol-
ogy ePrint Archive, Report 2011/396, 2011, http://eprint.iacr.org/.

[7] G. Asharov, R. Canetti, and C. Hazay, “Towards a game theoretic view
of secure computation,” in EUROCRYPT, ser. Lecture Notes in Computer
Science, K. G. Paterson, Ed., vol. 6632. Springer, 2011, pp. 426–445.

[8] R. Canetti, “Security and composition of multi-party cryptographic pro-
tocols,” JOURNAL OF CRYPTOLOGY, vol. 13, p. 2000, 1998.

