JXTA anonymity through a replicated
message-based approach

Alex Garcia-Dominguez, Marc Domingo-Prieto, Joan Arnedo-Moreno
Internet Interdisciplinary Institute (IN3)
Universitat Oberta de Catalunya
Barcelona, Spain
lex, mdomingopr, jarnedo@uoc.edu

Abstract—JXTA is a mature set of open protocols, with more
than 10 years of history, that enable the creation and deploy-
ment of peer-to-peer (P2P) networks, allowing the execution of
services in a distributed manner. Throughout its lifecycle, it
has slowly evolved in order to appeal a broad set of different
applications. Part of this evolution includes providing basic
security capabilities in its protocols in order to achieve some
degree of message privacy and authentication. However, under
some contexts, more advanced security requirements should be
met, such as anonymity. There are several methods to attain
anonymity in generic P2P networks. In this paper, we propose
how to adapt a replicated message-based approach to JXTA, by
taking advantage of its idiosyncracies and capabilities.!

Keywords: peer-to-peer, security, anonymity, JXTA, Java,
replicated message, multicast.

I. INTRODUCTION

JXTA [1] is a technology that enables the deployment of
peer-to-peer (P2P) applications, allowing a set of heteroge-
neous devices, ranging from cell phones and wireless PDAs
to PCs and servers, to form groups and collaborate in a
self-organized manner, regardless of the underlying network.
Peers may freely interact even when some of the peers and
resources are behind firewalls and network address translations
(NATS) or rely different network transport methods. Created by
SUN in 2001, JXTA has iterated through successive revisions
during its 10 years of history, slowly gaining popularity, with
over 2,700,000 downloads and more than 120 active projects.
Its latest Java version, JXTA 2.7 [2], became available in
March 2011. The main highlights include some long awaited
basic security improvements, such as secure peer groups and
advertisement signatures.

Even though JXTA can be considered a mature and thor-
oughly tested technology, being used in projects which range
from robot control applications to systems management or
real-time collaboration platforms [3], [4], there is still a long
way to go as far as security is concerned. As P2P systems
evolve and are used in new scenarios, more advanced security
capabilities become important. An example of them is message
anonymity [5]. Even though the concept of anonymity in P2P
networks is often associated with situations where exposure
has very strong implications, such as maintaining the right to

IThis work was partly funded by the Spanish Government through projects
TSI2007-65406-C03-03 E-AEGIS, TIN2011-27076-C03-02 CO-PRIVACY
and CONSOLIDER INGENIO 2010 CSD2007-0004 ARES.

free speech or circumventing legal responsibilities [6], there
are also everyday situations in which nobody is trying to avoid
ending up in jail. Anonymity also provides a way to increase
the users’ trust in the system and encourage participation in
more mundane activities such as a corporate suggestion box,
a small ballot system or a peer evaluation form.

Anonymity in P2P networks may be achieved through
different methods [7]. With the objective of providing JXTA
with a full suite of anonymity protocols which may cater to
a broad set of scenarios, in our previous work we proposed
and studied different approaches, such as unimessage and
split message ones [8], [9]. The former can be considered
the most popular ones, since they provide the highest degree
of anonymity, whereas the latter are quite effective in very
dynamic environments, where peers often go offline and then
back online. In this paper, we assess how a third different
approach, a replicated message-based one, may be adapted to
the idiosyncrasies of a JXTA-based service.

Even though replicated message-based approaches are not
very recent, we deem it interesting taking them into consid-
eration since they rely on very different methods to transmit
data, mainly broadcast and multicast, decreasing the delay of
communications. Generally, anonymity is achieved by sending
the message through some peers, adding delay. Replicated
message-based approaches add a huge overhead, since mes-
sages are sent to a group of peers not just one. But in
networks with a low message rate, using this technique may
really decrease the amount of time required to receive a the
response from a query. Also, adapting this protocol to JXTA
is interesting, since JXTA integrates peer groups as well as
broadcast and multicast mechanisms into its core architecture.

The paper is structured as follows. In Section II, we provide
a thorough review of replicated message-based approaches
to anonymity within P2P systems. Section III describes our
proposed adaptation of a replicated message-based protocol to
the specifics of JXTA. We also discuss some protocol tweaks
and improvements on the original proposal. In Section IV we
provide some results about the processing time requirements
of the protocol in a JXTA network, based on experimentation.
Finally, Section V concludes this paper and outlines further
work.

II. RELATED WORK

Several surveys on anonymity on unstructured P2P networks
exist [10], [7], each one proposing a different taxonomy to
categorize current approaches. Our work is based on the latter,
being the most recent one. According to the author, approaches
can be divided into three categories: unimessage, split message
and replicated message.

On one hand, in a unimessage approach, the anonymous
message travels across the network, usually encrypted, as a
single entity. An important subset of this category, path-based
approaches and its variations [11], are the most popular in
peer-to-peer anonymity. On the other hand, a split message-
based approache divide the message into several pieces which
travel independently of each other towards the destination. Re-
construction usually relies on threshold systems [12]. Finally,
in a replicated message one, the message is not divided, but
multiple encrypted full replicas are spread across the network,
taking advantage of multicast or broadcast capabilities, so it
is not easy to pinpoint the actual destination.

In this section, we focus on the latter approach, since it is
the chosen mechanism for our proposed anonymity layer, so
it is possible, given our previous work, to provide a full set
of anonymity protocols to JXTA services. The main strength
of the kind of protocols under this category, in contrast with
the other two categories, is its fault tolerance, requiring less
collaboration between peers to successfully transmit messages.
In addition, they are more resistant to collusion between rogue
peers or traffic analysis by global attackers.

A generic approach which relies on the basics of this
category can be traced back as far as [13], where multicast-
based communications are used as a way to anonymously
transmit data. In this proposal, all participants are structured
using a spanning tree, where each entity assumes the role of a
single node. Data is iteratively forwarded across the tree, after
being processed using a xor operation in such a manner that
only the actual receiver will get the original data.

Nevertheless, the basic ideas have been later adapted to
P2P networks. One of the main contributions can be found
in P® [14]. Peers are divided into a structure of hierarchical
channels, according to the result of applying a hash algorithm
on each peer’s public key. Such hierarchy is implemented as a
unicast tree where channels in the upper tiers include all peers
in lower tier channels, the root node encompassing all peers in
the networks. Therefore, the lower in the structure a channel
is, the more efficient it is at broadcast transmission, but at the
cost of lowering the anonymity set. Messages are propagated
across channels in a manner that peers may chose their own
trade-off between efficiency and anonymity. As an additional
feature, peers keep a fixed transmission rate of noise packets,
S0 it is not possible to assess when an actual valid transmission
has just started.

Another proposal, that specially focuses on receiver
anonymity, can be found in [15]. The authors argue that sender
anonymity is the most favored scenario in current proposals,
and more efforts should be made on receiver anonymity.

Using the quite straightforward method of relying on multicast
groups to transmit encrypted messages, it is guaranteed that
the actual receiver is the only one able to decrypt and process
the message. Nevertheless, its main feature is the use of what
the authors call an Incomparable Public Key cryptosystem.
In this scheme, a secret key can be linked to a set of public
keys, instead of to a single public key, but, given two random
public keys, it is impossible to decide whether both belong
to the same set or not. Thus, colluding senders cannot share
data to guess whether they are sending messages to the same
destination, thus providing additional receiver anonymity.

Taking some ideas from the former proposals, in [16], a
multicast tree is constructed to transmit messages. However,
in this case, the hierarchy is generated in a completely decen-
tralized and self-organized manner. In addition, the resulting
structure is heavily based on the actual network topology
and connections of peers, instead of on the result of a hash
algorithm, thus increasing efficiency.

Hybrid approaches also exist, such as Hordes [17], an
evolution of Crowds [18], which combines the features of path-
based and replicated message protocols. Message requests are
sent using probabilistic forwarding, whereas responses entirely
rely on multicast transmission, as summarized in Figure 1.
Access to the anonymous network, or horde, is managed
through a set of servers which provide the base multicast
address and the addresses of other horde members. Differently
to other approaches, peers do not join to the same multicast
group for their whole connection lifecycle, but whenever a
sender transmits a message, it subscribes to a random multicast
group, where he will wait for the response. In this scenario,
given that the reply path will be the shortest one to the original
sender, response time is improved.

D Multicast groups

—p Probabilistic forwarding

— —» Multicast response

Fig. 1. Hordes hybrid approach (S: Sender, D: Destination)

We have chosen the Hordes protocol as the basis for our
work, since it provides a nice trade-off between simplicity and
efficiency, taking full advantage of multicast communications.
Furthermore it is one the few proposals in this category where
the authors explicitly quantify the anonymity of their protocol.
In fact, from this assessment, it is concluded that the protocol
is quite complementary to unimessage protocols, being able to
withstand attacks which can be successful on them and vice-
versa. Therefore, we consider it is an interesting alternative to
consider in a JXTA anonymity suite layer, given our previous

work up to date. Depending on the kind of attacks a developer
is more concerned about, he will be able choose the most
convenient anonymity approach.

III. A REPLICATED-MESSAGE PROTOCOL FOR JXTA

JXTA core primitives provide application developers with
the means to easily deploy services and exchange messages
between them, independently of the services’ final purpose. In
order to propose an anonymizing mechanism for JXTA which
takes advantage of these core capabilities, it is important to
review the most important characteristics of its architecture.
From this study, it is possible to propose an adaptation of the
Hordes protocol as an anonymity layer which meshes with the
mechanisms JXTA provides to deploy services.

A. JXTA architecture overview

The main idiosyncrasy in JXTA’s design, which sets it apart
from other P2P frameworks, is introducing the concept of peer
group, a segmentation of the global JXTA network. All peers
publish and consume services within the context of a group,
interacting with each other by using JXTA’s core services, the
most important ones being the Membership, Discovery and
Pipe services. Only peers within the same peer group may
interact.

The Membership Service allows joining a peer group
and claiming an unique identity within the group’s context.
Through this service, each group member is provided with a
credential, which may be used at any time to authenticate to
other group members. Different implementations exist depend-
ing how such identity is claimed and the credential format.

The Discovery Service manages group resources publication
and discovery. Every resource in a JXTA group is described
by an Advertisement, an XML metadata document. A resource
cannot be accessed unless its corresponding Advertisement
is previously retrieved. It is the Discovery Service’s respon-
sibility to manage and distribute Advertisements, since a
resource is not considered available unless its Advertisement
is periodically published.

There are several Advertisement types, but the most impor-
tant ones are:

e Peer Advertisement: Describes a peer and the resources
and services it provides, under a special service parameter
entry. Each peer is responsible for the publication of its
own Peer Advertisement, and a peer is only considered
online while he continues to do so.

e Pipe Advertisement: Describes a JXTA Pipe, an abstract
communication channel, usually deployed by a service
provider to receive queries. It is the main mechanism to
exchange data between applications.

Finally, the Pipe Service is responsible for managing mes-
sage exchanges using JXTA Pipes. The simplest pipe in JXTA,
the JxtaUnicast type, provides an asynchronous, unidirectional
message transfer mechanism which can be easily established
and managed. Nevertheless, there is a higher-level communi-
cation abstraction, the JxtaBiDiPipe, which provides a bidirec-
tional communication channel. The latter is usually preferred

by services, since it allows a straightforward query-response
message exchange. The description of JXTA’s standard service
model based on this procedure follows:

1) Each service provider starts a JXTAServerPipe using the
Pipe Service, which makes available and listens to an
input pipe in order to process inbound communication
requests. This input pipe is defined using a Pipe Adver-
tisement.

2) The service provider publishes the Pipe Advertisement
to other group members using the Discovery Service.

3) The Advertisement is propagated within the group by
Rendezvous Peers, special super-peers who efficiently
distribute Advertisements.

4) To consume a service, a peer also uses the Discovery
Service to retrieve the Pipe Advertisement. Then, a
connection is established via the Pipe Service and the
consumer may begin sending messages.

5) Once a message is received at the server side, the results
depend on the pipe type, JxtaUnicast or JxtaBiDiPipe.
In the former case, messages may be processed, but
no response is possible. On the latter case, a linked
outbound communication channel is created and two-
way exchanges are made possible.

JXTA messages sent through pipe connections follow a
predefined structure comprised of a set of name/value pairs
labelled under a namespace and organized as an ordered
sequence. As a message passes down each JXTA layer, one
or more named elements may be added to the message
(for example, control data). Their order within the message
structure always follows the same order they were added. As
a message is processed back up the stack, each layer will
remove these elements, until only application data remains.

Message exchanges can be secured in JXTA by using a
group based on the PSE (Personal Security Environment)
Membership Service implementation. Under this kind of peer
group, each peer is provided with a credential based on
public key cryptography. This guarantees that each peer has
initialized a valid pair of public-private keys and that the public
key of each peer is automatically distributed inside its Peer
Advertisement, in a special service parameter entry.

B. Anonymizing procedure

From JXTA’s architecture overview, we propose an
anonymity layer that causes the minimum interferences on
the JXTA messaging layers. The chosen approach to provide
anonymity capabilities to JXTA services through the Hordes’
protocol is based on the deployment of an anonymizer service
at the JXTA Community Service layer. The anonymizing
service works within the context of a peer group, meaning
that only peers from the same peer group may exchange
anonymous messages (as is the case for any other JXTA
service). The group becomes equivalent to the horde concept
of the Hordes protocol.

Each peer is free to deploy the service, or not, and it is
not assumed that every group member always does all the
time. The service is tailored to JXTA’s core services features.

Therefore, the deployment procedure follows the same steps
as for any other peer service, making use of JXTA’s service
model without the need of modifying JXTA’s initial design.
Applications which execute end services or/and clients may
communicate through the anonymity service, which acts as an
invisible layer. However, as a requirement, the peer group must
operate under the PSE Membership Service, guaranteeing that
all group members have a properly initialized keystore.

An overview of the proposed architecture is summarized in
Figure 2.

JXTA JXTA
Applications Application

Hordes
Client

End Client]
JXTA
o Anonymity AES End
[- o R {25
Y T

ffffffffff e e S

JXTA Core [Discovery J Pipe J [PSE Merr)bership}

Services Service Service

JXTA JXTA
Advertisements | | Messaging

Anonymity service operation in the context of JXTA’s architectural

Fig. 2.
design.

The execution of the anonymizer service in any peer
can be divided in the following procedures: Service
Initialization, Message Transmission and Message Processing
and Forwarding.

Anonymity Service Initialization:

Before the anonymizer service can be used, it is necessary
to locate the horde peer group. This group is identified by a
well-known JXTA’s group identifier. At this point, two things
can happen depending on whether the group is found or not.
If the group is found, the normal procedure continues. If that
is not the case, the peer assumes that no other peer is using
the anonymizer service and creates a new horde group. When
the Hordes peer group is deployed, a probability of forwarding
(pf) value, that must have a value in the range 0.5 < pf < 1,
is also established by the group creator. This value’s utility will
be explained at the Message Processing and Forwarding step.
Then, the advertisement of this new group, which includes the
pf parameter, is periodically published using the Discovery
Service.

Once the Hordes peer group has been established, any
peer that desires to join, including the creator itself, must
initialize its cryptographic keys and certificates and use the
PSE Membership Service. When the group has been joined,
the peer’s Peer Advertisement is periodically published in the
horde group and can be located by any other horde group
member from then on. Then, the peer actually deploys the
anonymizer service at the JXTA Community Services layer.

Taking into account the characteristics of the anonymizer
service and JXTA, a measure to optimize the performance of
the network has been taken into account. Both the peer’s cryp-
tographic information and the anonymizer service’s pipe are
published inside the Peer Advertisement. This minimizes the

number of advertisements spread along the JXTA network, and
speeds up all the process, since all the information needed to
exchange anonymous messages between horde group members
is directly inside each Peer Advertisement.

Before every anonymous message can be sent, it is nec-
essary to perform an additional set up: initialize a Forward
subset and subscribe to a multicast group.

The Forward subset is a random list of peers used to forward
messages to the destination. Each peer has its own Forward
subset which is renewed periodically (by default, 24 hours).
The Forward subset has to contain only a part of the total horde
group members in order to prevent path analysis attacks. The
size of this list and the renew time are parameters that can be
modified to fine tune the service for different scenarios.

As far as the multicast group subscription is concerned, the
main characteristic of Hordes is the use of multicast group for
response transmission. Our anonymizer service relies on a pre-
made set of multicast groups with well-known identifiers and
all of these groups have an associated pipe. Peers must sub-
scribe to any of these groups in order to receive responses. Is is
worth noting that the multicast pipe can be a propagated one,
bound to the multicast group, or a JXTA JxtaMulticastSocket
one, based on multicast socket emulation. In both cases, all
the messages sent to this pipe are propagated to all peers that
subscribed the pipe group.

The subscribe process to a multicast group is made by
choosing it randomly at query transmission time. The peer
is unsubscribed from the multicast group as soon as the
response is received, or a time out expires. This implies that a
peer cannot send more than one anonymous message at once.
Also, Hordes recommends to perform the unsubscribe process
only after receiving the next message after the one responding
the initial anonymous query. This measure avoids false reply
attacks, even though it may cause deadlocks if infinite or
long timeouts are set. Nevertheless, these limitations can
be overcome by implementing a sending/receiving message
queue mechanism.

Message Transmission:

The message transmission procedure is executed whenever a
peer wants to send an anonymous message to consume a JXTA
end-service. We have chosen to deploy the message exchange
between peers using JXTA’s secure pipes, which relies on the
cryptographic data from the PSE Membership service, such
as cipher keys and algorithm type. JXTA can be configured to
automatically access this information, or it can be manually
accessed in the services code itself. In any case, the exchange
of information between two peers is encrypted, and only these
two peers can access it.

The steps to send an anonymous message, M sg using the
Hordes approach under the JXTA architecture follows:

1) The sender locates the destination peer’s Peer Advertise-
ment, DstPeerAdv. This advertisement also contains
the destination’s JXTA identifier DstId. The sender and
the destination peer should not be the same.

2) From within DstPeer Adv, the chosen end-service Pipe
Advertisement, SvcPipeAduv, is extracted.

3) A random message identifier, Msgld, is generated,
uniquely identify the message for its life cycle period.
Hordes recommends a length of at least 128 bits in order
to avoid collisions.

4) One of the available multicast channels in the Hordes
group, with identifier Mchld, is randomly chosen. The
peer joins to the chosen multicast group.

5) A message, HordesM sg, is constructed, following the
Hordes protocol parameters, under the JXTA message
name-value pair syntax. It contains the following fields:

e tag_desti : Dstld

e tag_mcast : Mchld

e tag_id: Msgld

e tag_msg : Msg, structured using a syntax as
expected by the end-service.

e tag_pipe : SvcPipeAdv.

6) The sender randomly chooses a peer from its Forward
Subset list of peers, fwdPeer.

7) fwdPeer’s Peer Advertisement is retrieved. The
anonymizer protocol Pipe Advertisement is extracted
from it.

8) Using the Pipe Advertisement, a connection to
fwdPeer’s anonymizer service instance is established
and HordesM sg is forwarded.

9) A timeout counter is started and the sender blocks until
a message is sent to the multicast group or the timeout
ends. The message exchange is only successful in the
former case. The received multicast message has the
following JXTA message structure:

e tag_msg_id : Msgld.
e« tag_msg_data : The reply message generated by
the end-service.

Whenever a message is received through a subscribed
multicast group, the value of its tag_msg_id field
of any message received via the multicast group is
compared with any identifier generated. If a match is
produced, it means that the reply has arrived and the
operation is finished. If the timeout expires and the reply
has not arrive, it implies that the message has been a
lost. At this point a new query can be sent relying on
this multicast group.

Message Processing and Forwarding:

This procedure is activated automatically when the
anonymizer service receives a forwarded message from any
other peer of the horde group (be it the original sender or
a peer from the same Forwarding subset). Any peer that has
joined to the horde group and belongs to some other peer’s
Forwarding subset may receive messages and has to process
them.

The processing mechanism follows:

1) The probability of forwarding (pf) parameter is re-
trieved.

2) Generate a random number (n) in the range: 0 < n < 1.

3) The forward condition is checked: n > pf.

4) If the forward condition is true the message is forwarded
to another peer in the Forward Subset. The peer ran-
domly chooses another peer from its Forward Subset list
of peers. and acts like the original sender in the Message
Transmission procedure, Steps 6-8.

5) If the forward condition is false the message is not
forwarded, but finally sent to the end-service. Extracting
the information from inside the Hordes message, the
peer:

a) Tries to contact with the destination peer
(tag_desti) and opens the a channel to the end-
service’s pipe (tag_pipe).

b) Consumes the service by sending the actual mes-
sage (tag_msg) to the pipe and waiting for the reply
from this pipe.

¢) Subscribes to the multicast group (tag_mcast) and
create the multicast message, as expected in the
Message Transmission procedure, Step 9.

d) The multicast message is sent to the multicast
group, awaking all subscribed peers that are wait-
ing for a response using this the multicast group.

One of the main differences between the returning multicast
mechanism and the forwarding mechanism is that, according
to the Hordes protocol, in the former, the message is sent in
plain text, without encrypting it. This means that any peer
that is subscribed to the multicast group will get the message
identifier and the reply to the message and can understand it.
However, knowing this information does not reveal the identity
of the source or destination peer, guaranteeing anonymity.
Nevertheless it is not difficult to add privacy to the response.

IV. EXPERIMENTAL RESULTS

Some small preliminary tests have been done in order to
assess the performance of this anonymity protocol in JXTA,
at least in comparison with other approaches. We compared the
JXTA implementation of Hordes with Onion Routing, given
some of its similarities in its forwarding mechanism. Out test
tried to evaluate the computational effort required at each hop.
By measuring it, we could assess the differences in both pro-
tocols’ forwarding algorithm given an actual implementation.
The testbed chosen has been a MacBook Pro computer, where
5 peers running each protocol have been deployed. Since the
tests done are just a comparison of the computational resources
required and not a general analysis, it is enough if the same
environment is used for the testing of both protocols.

The results of showing the amount of time required to
process a single hop in a JXTA peer are in Figure 3. This
shows that in average Onion Routing is a bit faster than
Hordes, which a bit unexpected, since the forwarding algo-
rithm is a more complex. On average, Hordes needs 13,1 ms
to compute a hop, while Onion Routing only needs 11,3.
Carefully investigating, the reason seems to be because of
JXTA secure connection’s overhead. In Hordes, a Peer has to
decrypt de message, process it, and encrypt it again, whereas

[=]

e v
28 ©
== o
og g
=
=]
- =
o o

=
5 =)
= =
=
wn = w =) = w = =}
= u r = P [Ty '] = =
— — — — o

Computational time per hop (ms)

Fig. 3. Time to process a single hop
pf 0.5 0.6 0.7 0.8 0.9
Probability || 96.88 | 92.22 | 83.19 | 67.23 | 40.95
TABLE I

PROBABILITY OF USING LESS AVERAGE COMPUTATION TIME IN HORDES
THAN IN ONION ROUTING BASED ON THE pf PARAMETER

in Onion Routing only has to peel out one layer of encryption.
Also, the figure shows that these measures are less dispersed
in Hordes than in Onion Routing.

Nevertheless, given the pf parameter, the total aggregated
processing time used between all nodes may vary, and become
higher or lower than the one in Onion Routing for some cases.
Given the typical value of total 6 hops in Onion Routing [19], 3
for the query and 3 for response, and the average computation
time per hop found previously, Table I has been calculated.
This table shows the probability that, for a given value of pf,
the average aggregated processing time will be actually lower
for Hordes.

V. CONCLUSIONS

This paper has presented the design of a replicated message-
based anonymity layer for JXTA, as an alternative to the more
popular unimessage-based or split message ones. This layer
was created by adapting the Hordes protocol to the specifics
of JXTA. The protocol adaptation is tightly integrated to its
architecture, working only within the context of a standard
service’s operation method. Thus, it has not been necessary to
define new protocols or primitives aside from the ones already
available in JXTA. A further advantage of this is that pipe and
cryptographic data publication is seamlessly integrated within
its standard presence mechanism.

Currently, the implementation is finished and we have been
able to preliminary test it, assessing how fares against other
approaches in very basic metrics. Based on the experiments
done up to now, it looks like that, surprisingly, even though
the algorithm looks much more simple that the one used in
Onion Routing, in its actual implementation using the JXTA
middleware, the computation time is a bit worse under some
conditions (but, on the other hand, is less variable). The use
of JXTA secure sockets seems to impact its performance,
showing that some designs decisions that look good on paper,
or when simulated, do not behave as expected when imple-
mented, interacting with other systems. Thus, experimental
evaluation on real systems becomes important.

Further research is twofold. On one hand, further evaluation
using other useful metrics is necessary, such as round-trip-
time or reliability, in order to meaningfully compare this
implementation to others in JXTA. This study will also allow
us to fine tune some its overall performance. Once this fine-
tuning is finished, it will be possible to create a full anonymity
suite that may be integrated into existing JXTA applications,
so developers may choose which approach to use depending
on their specific needs. On the other hand, in retrospective,
we’d also like to assess other replicated-message protocols,
such as PS5, which also relis on an core design based on peer
grouping, such as JXTA.

[1]
[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

REFERENCES

Sun Microsystems Inc., “JXTA v2.0 protocols specification”, 2007,
https://jxta-spec.dev.java.net/nonav/JX TAProtocols.html.

Project Kenai, “JXSE: The Java Implementation of the JXTA Protocols”,
2011, http://jxse.kenai.com.

Liberatio Systems Management, “Liberatio”, 2006, http://www.ohloh.
net/p/liberatio.

ConneX, “Connex Project”, 2007, http://connex.sourceforge.net.

A. Pfitzmann and M. Hansen, “Anonymity, unlinkability, undetectability,
unobserv- ability, pseudonymity, and identity management a consol-
idated proposal for terminology”, 2008, http://dud.inf.tu-dresden.de/
Anon_Terminology.shtm.

J. D. Wallace, “Nameless in cyberspace: Anonymity on the internet”,
1999, http://www.cato.org/pubs/briefs/bp-054es.html.

X. Ren-Yi, “Survey on anonymity in unstructured peer-to-peer systems”,
Journal of Computer Science and Technology, vol. 23, no. 4, pp. 660—
671, July 2008.

M. Domingo-Prieto and J. Arnedo-Moreno, “JXTAnonym: An
anonymity layer for JXTA services messaging”, IEICE Transactions
on Information and Systems, vol. E95-D, no. 1, January 2012.

J. Arnedo-Moreno and N. Pérez-Gilabert, “Split message-based
anonymity for jxta applications”, in The Sixth International Conference
on Complex, Intelligent, and Software Intensive Systems (CISIS-2012),
2012, pp. Accepted, to be published.

M. Rogers and S. Bhatti, “How to disappera completely: A survey of
private peer-to-peer networks”, in In Proceedings of International Work-
shop on Sustaining Privacy in Autonomous Collaborative Environments
(SPACE), 2007.

P. Syverson, D. Goldsclag, and M. Reed, “Anonymous connections and
onion routing”, Proceeding of the IEEE [8th Annual Symposium on
Security and Privacy, pp. 44-54, 1997.

Yvo G. Desmedt and Y. Frankel, “Threshold cryptosystems”, in
CRYPTO ’89: Proceedings on Advances in cryptology, New York, NY,
USA, 1989, pp. 307-315, Springer-Verlag New York, Inc.

S. Dolev and R. Ostrobsky, “Xor-trees for efficient anonymous multicast
and reception”, ACM Trans. Inf. Syst. Secur., vol. 3, pp. 63-84, 2000.

R. Sherwood, B. Bhattacharjee, and A. Srinivasan, “P5: A protocol
for scalable anonymous communication”, in PROC. IEEE SYMP.
SECURITY AND PRIVACY, 2002, pp. 58-70.

R. B. Waters, E. W. Felten, and A. Sahai, “Receiver anonymity via
incomparable public keys”, in The 2003 ACM Conference on Computer
and Communications Security, 2003, pp. 112—121.

Y. Wang and P. Dasgupta, “Anonymous communications on the inter-
net”, in Proc. of the 10th ACM Conf. on Computer and Communication
Security, 2005.

B.N. Levine and C. Shields, “Hordes: A multicast based protocol for
anonymity”, Journal of Computer Security, vol. 10, no. 3, pp. 58-70,
2002.

M.K. Meiter and A.D. Rubin, “Crowds: Anonymity for web transac-
tions”, ACM Transactions on Information and System Security, vol. 1,
no. 1, pp. 66-93, 2004.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second
generation onion router”, Proceeding of the 13th USENIX Security
Symposium, pp. 303-320, 1998.

