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Abstract—In this paper, several steganalytic techniques de-
signed to detect the existence of hidden messages using histogram
shifting schemes are presented. Firstly, three techniques to
identify specific histogram shifting data hiding schemes, based
on detectable visible alterations on the histogram or abnormal
statistical distributions, are suggested. Afterwards, a general
technique capable of detecting all the analyzed histogram shifting
data hiding methods is suggested. This technique is based on
the effect of histogram shifting methods on the “volatility” of
the histogram of the difference image. The different behavior
of volatility whenever new data are hidden makes it possible to
identify stego and cover images.

Index Terms—Communication security, steganalysis, steganog-
raphy.

I. INTRODUCTION

Data hiding [16] is a collection of techniques to embed
secret data into digital media such that its existence becomes
undetectable by some attacking party. Data hiding can be
applied to secret communications, copyright protection, au-
thentication of digital contents and other applications. The
most common carriers used for data hiding are images because
of their widespread use in the Internet.

To hide data into a cover image, pixel values are changed
and image distortion occurs. Usually, the distortion due to data
hiding is not reversible and the original image can not be
recovered. However, there are techniques that have the ability
to restore the original image. These techniques are known as
reversible data hiding [14], [5], [8], [11], [3], [7], [9], [6].

The simplest non-reversible data hiding method consists
of modifying the least significant bit (LSB) of some (or all)
pixel values, which is often referred to as LSB steganography.
In [15], several attacks on LSB steganography are described.
Later, in [4], the RS attack is introduced, which can reliably
detect messages even for embedding capacities as low as 0.03
bits per pixel (bpp). In general, much work has been devoted
to develop steganalytic tools for LSB steganography, LSB
matching [12] or JPEG steganography [13], but little attention
has been paid to other data hiding strategies, such as the
histogram shifting methods analyzed in this paper.

A reversible data hiding method based on histogram shifting
was proposed in [11]. This scheme uses the information about

peaks and zeros of the histogram of the cover image to perform
a partial shift, leaving a gap to hide data. In the Ni et al.’s
method [11], the embedded secret data cannot be recovered
when the knowledge of peak and zero point of histogram are
not transmitted to the receiver. In order to overcome the above
drawback, Hwang et al. [7] proposed a robust reversible data
hiding scheme based on the histogram shifting method. This
new approach proposes the use of a location map to store the
information needed to reverse the process when the minimum
point of histogram is non-zero.

Later, in [5], Hong et al. presented a scheme which performs
a shift of the histogram of prediction errors. This method is
based on [11], but has greater capacity. In their paper, Hong et
al. use the median edge detector (MED) to predict pixel values
(as detailed in Section II-C). Since the histogram of prediction
errors is sharply centered at zero, we can use the concept of
histogram shifting to hide information without determining the
peak and zero points, unlike Ni et al.’s method. Although the
histogram shifting technique is commonly used in reversible
data hiding, several methods have recently emerged and are
used as non-reversible ones [10].

There is some work on steganalysis applied to histogram
shifting methods. Particularly, a few of them perform the
detection based on changes in the shape of the histogram.
In [14], a technique to attack the method based on shifting
the histogram of the difference image of [9] is presented.
This technique is based on detecting an unusual shape in
the histogram, similar to the attack we present in Section
II-A. However, this technique is not applicable to [11]. In
[8], a technique to attack the method of [7] is presented. As
in the previous case, this technique is based on finding an
unusual shape in the histogram but, again, it is not applicable
to the histogram shifting method of [11]. In both cases, this
irregularity affects seven of the histogram bins. Therefore, it
hardly ever occurs in cover (unmarked) images. In [11], the
irregularity affects only four bins, making it harder to detect.

This paper presents different steganalytic tools which can be
used to detect histogram shifting steganography for Ni et al.’s
method [11], Mohsenzadeh et al.’s method [10] and different
histogram shifting of prediction errors techniques, such as that
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(a) Histogram of the original Lena image
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(b) Histogram of the Lena image marked with [11]

Fig. 1: Histogram comparison

of [5]. In addition, the concept of the “volatility” of a his-
togram of prediction errors is introduced, and the measurement
of this volatility before and after random embedding is shown
to be effective to detect all the above histogram shifting data
hiding schemes with a significantly high accuracy.

The rest of the paper is organized as follows. Section II
proposes four steganalytic techniques. Three of these tech-
niques are specific for particular data hiding schemes, whereas
the fourth one is generic and can be applied to any of them.
Section III shows the experimental results obtained with the
different specific techniques and the generic one. Finally,
Section IV draws the conclusions and outlines some guidelines
for future research.

II. PROPOSED STEGANALYTIC METHODS

In this section, we present four steganalytic techniques.
The first method detects Ni et al.’s scheme [11] by finding
anomalies in the histogram of pixel intensities. The second ste-
ganalytic technique detects Mohsenzadeh et al.’s [10] method
by searching for an unusual statistical distribution introduced
by the embedding algorithm. The third steganalytic technique
detects Histogram Shifting of Prediction Errors (HSPE) meth-
ods [5] studying the “volatility” of the histogram. Finally,
the fourth technique extends the third one to create a generic
method which can be applied to detect all of the above.

A. Ni et al.’s Method

In 2006, Ni et al. [11] presented a reversible data hiding
method which consists in shifting the histogram of the image
in order to create a gap to hide secret data. Their method uses
a simple but effective algorithm:

Procedure 1 (Ni et al.’s method [11]):
1) Find the maximum (or peak) of the histogram, which

corresponds to a pixel value P , and then find a zero to
the right of P , which corresponds to the pixel value Z.

2) Shift the histogram to the right, from the peak to the
zero point. To do this, all the pixels of the image with
values between P+1 and Z−1 (included) are increased
by 1.

3) To embed the message, it is necessary to scan the entire
image looking for all the pixels with value P . These
pixels are replaced by P + 1 to embed ‘1’, or keep the
same value (P ) to embed ‘0’.

In Fig.1, we can see the histogram of pixel intensities for
the grayscale Lena image with 512 × 512 pixels [2], before
and after data have been hidden with the method described in
Procedure 1 [11]. If we compare the original histogram with
the histogram of the marked image, there is a visible notch
caused by histogram shifting and data hiding, as highlighted
in Fig.1(b) with a dashed ellipse.

The abnormal shape in the histogram of the marked image
can be detected with some reliability by applying the following
observations. Let hi, hi+1, hi+2 and hi+3 be four consecutive
bins of the histogram, then a peak replacement in hi+1 can be
detected as follows:

1) hi+1 + hi+2 is greater that any bin of the histogram,
2) hi+1 and hi+2 are approximately equal and
3) hi or hi+3 are not much smaller than hi+1 + hi+2.

The last two conditions require some thresholds as detailed in
Section III.

B. Mohsenzadeh et al.’s Method

In 2009, Mohsenzadeh et al. [10] presented a stegano-
graphic method which is able to thwart histogram based
steganalysis. Their method uses histogram shifting techniques
to hide non-reversible data with the following algorithm.

Procedure 2 (Mohsenzadeh et al.’s method [10], Alg. 1):

1) Find the maximum bin (or peak) of the histogram, which
corresponds to a pixel value P , and then find the first



zero to the left (Zl) and the first zero to the right (Zr)
of the peak.

2) Shift the histogram to the right, from P + 1 to Zr − 1,
and do the same to the left from P − 1 to Zl+1. To do
this, 1 is added to each pixel of the image with value
between P +1 and Zr−1 and 1 is subtracted from each
pixel between P − 1 and Zl + 1 .

3) To embed the message, it is necessary to scan the entire
image in zigzag order looking for all pixels Izig(i) with
values P +2 or P − 2. To embed ‘0’, set Izig(i− 1) :=
P+1 (or P−1) and, to embed ‘1’, set Izig(i+1) := P+1
(or P − 1).

Mohsenzadeh et al. [10] present a second algorithm that
uses a secret key to randomize the position of the modified
pixels. For each selected pixel (with value P + 2 or P − 2),
the message bit is embedded in one of its eight neighboring
pixels, rather than using the neighbors in zigzag order as done
in Algorithm 1. This variant is referred to as Algorithm 2.

Procedure 2 (or Algorithm 1 as defined in [10]) produces a
significant statistical anomaly, since there is always a P + 1
(or P − 1) value next to P + 2 (or P − 2). For this reason,
we can detect hidden data with this algorithm, counting those
occurrences next to all the pixels (in a zigzag traversal of the
image). If we consider each pixel of the image as a potential
P + 2 or P − 2, we can check if this pixel has a P + 1
or P − 1 neighbor to its left or right (in zigzag order). If
so, we can assume that P is a peak candidate and count this
occurrence. Statistically, the maximum number of pixels that
satisfy this constraint corresponds to the peak used to embed
data. Therefore, if we draw a histogram with the frequency of
pairs (P + 2, P + 1) and (P − 2, P − 1) counted for each
peak candidate P , the highest bin corresponds to the true
peak P . This is illustrated in Fig.2 for the Lena image, where
the peak P occurs for the value 156. Note that this is not a
standard histogram of the pixel intensities. Each pixel value is
considered to be P + 2 (or P − 2) and, if P + 1 (or P − 1)
occurs next to the pixel, then we increase the bin of P .

Apart for the highest frequency found for P , there is a
detectable anomaly in this histogram since the bins of the
values P + 1, P − 1, P + 2 and P − 2 decrease more than
what is statistically expectable. We can also observe this fact
in Fig.2. This provides a powerful mechanism for identifying
stego images marked with this method, since we only have to
verify that, given seven consecutive bins of this histogram: hj

for j = i, i+ 1, . . . , i+ 6, the following conditions hold:
1) hi and hi+6 are greater than hi+1, hi+2, hi+4 and hi+5

and
2) hi+3 is the greatest value of the histogram.

This technique, which does not require any threshold, is not
applicable to Algorithm 2, due the randomized positions for
the modified values P + 1 and P − 1.

C. Histogram Shifting of Prediction Errors Methods

Histogram Shifting of Prediction Errors (HSPE) methods
were presented in [5]. There are many different HSPE data
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Fig. 2: Frequency of the candidate peaks P for the Lena image
marked with [10]

hiding methods and the most popular ones have been selected
for the experiments presented in this paper. HSPE schemes
obtain a histogram of the differences between the pixels
values and a prediction p computed using some prediction
equation. This histogram can be used to embed a message
using techniques analogous to that of [11].

The alterations of histograms of prediction errors are more
difficult to detect than those of pixel intensities, since his-
tograms of prediction errors can be generated from different
prediction formulas. However, neighboring pixels are often
used for this prediction. For example, Hong et al. [5] use
the median edge detector (MED) prediction to calculate the
predicted value (p) of a pixel x:

p =

 min(b, c), if a ≥ max(b, c),
max(b, c), if a ≤ min(b, c),
b+ c− a, otherwise.

where a, b and c are three neighbors of the pixel x, as shown
in Fig.3(a).

a b
c x

(a) 2× 2 adjacent pixels

a b c
d x

(b) 2× 3 adjacent pixels

Fig. 3: Pixel locations for prediction equations

There are simpler methods such as horizontal prediction:
p = c, vertical prediction: p = b, diagonal prediction:
p = a and others even more sophisticated, such as a causal
template prediction, like p = b(a+ b+ c+ d)/4c, where a,
b, c and d are shown in Fig.3(b) with respect to the pixel x
to be predicted and b·c stands for the nearest integer towards
negative infinity.

In this case, it is not possible to analyze the histogram of
prediction errors directly, since the specific prediction formula
will not be known (in general). Thus, It is necessary to take
another approach. One of the common traits of HSPE methods
is that they modify areas where the pixels are similar. When
similar pixels are modified by adding one, these pixels will
advance to the next bin of the histogram. As this occurs
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Fig. 4: Histogram comparison before and after HSPE embedding

throughout the histogram, after shifting in the difference
space, most bins give some of their pixels to their neighbors,
producing a less volatile histogram. This situation is illustrated
in Fig.4, where it can be seen that the frequencies of the
histogram obtained after HSPE embedding are more similar
to those of their neighbors. Therefore, the difference of a
bin with respect to the preceding and the succeeding ones
decreases in Fig.4(b) as compared to the original histogram
shown in Fig.4(a). Although the difference from some bins to
their neighbors may increase locally, the total difference from
all bins to their neighbors decreases globally.

We can measure the volatility V of the histogram comparing
the value of each bin hi with its neighbors hi−1 and hi+1 as
follows:

V =

254∑
i=1

∣∣∣∣hi−1 + hi + hi+1

3
− hi

∣∣∣∣ ,
which yields:

V =

254∑
i=1

∣∣∣∣hi−1 − 2hi + hi+1

3

∣∣∣∣ . (1)

Expression 1 is presented for clarity, but the following
normalized expression has been used in the implementation
of the methods:

V =

254∑
i=1

max(h̃i, hi)−min(h̃i, hi)

max(h̃i, hi)
, (2)

where h̃i = (hi−1 + hi + hi+1)/3. If hi−1 = hi = hi+1,
the i-th bin is not included in the computation of V (since it
contributes with 0 to the overall volatility).

The experiments show that the volatility of the image
histogram of pixel intensities is significantly reduced when
a message is embedded into a cover image. However, when it
is embedded into a stego image, the volatility is reduced to a
smaller extent. This behavior provides a detection mechanism:

the volatility of the test image can be compared with the
volatility after embedding a new message into it. If this
process significantly reduces the volatility, the image is cover,
otherwise it is stego. The new message is embedded by
choosing a random binary mask with the same dimensions of
the test image and adding it to the pixels values. This means
that, on average, 50% of the pixel values are increased by 1,
whereas the other 50% remains unchanged.

D. Generic Steganalytic Method

The detection technique presented in the previous section
is useful because it exploits some common characteristics of
different data hiding systems. However, it does not detect
the methods introduced by Ni et al. [11] or Mohsenzadeh
et al. [10]. The reason for this is that these schemes affect
only a reduced group of values of the frequencies of the
histogram, whereas some other frequencies are only shifted.
Thus, it becomes necessary to use a different histogram for
which most bins are affected by the different data hiding
methods introduced above. We have found that a histogram
of differences is suitable for this purpose if the following
prediction equation is used:

p =

⌊
a+ b+ c

3

⌋
, (3)

where a, b and c are as shown in Fig.3(a). Once all such
predictions are computed, a histogram based on the value of
the differences |x− p| is obtained.

When analyzing this histogram of differences, volatility
goes the opposite way as compared to the histogram of
pixel intensities. When embedding data, the volatility of the
histogram of differences increases instead of decreasing. How-
ever, after embedding a new message into a stego image, the
volatility remains almost unchanged.

Now, the method proceeds as described in the previous
section. Firstly, the volatility of the histogram of differences,



with the prediction of Expression 3, is calculated as per
Expression 2. Then, a new message is embedded (using a
random binary mask as described in the previous section)
into the image and, finally, the volatility is computed again. If
the volatility increases significantly after embedding, then the
image is declared cover, otherwise it is detected as stego.

III. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
with all the proposed algorithms. In these experiments, the
National Resource Conservation System (NRCS) [1] database
of 1371 images has been used. These images have been
embedded with the different methods described above. More
precisely, a testing set consisting of 2742 images, half of them
stego and half of them cover have been used for each of the
experiments detailed below (except for the mixed experiments
of Section III-D which have more specific settings).

For the generic algorithm, we have used a threshold of 15%.
This means that an image is considered stego if its volatility
increases less than 15% when embedding a new message,
otherwise it is considered cover. The results of the experiments
show that this threshold is appropriate.

A. Ni et al.’s Method
As detailed in Section II-A, this specific detection technique

requires two thresholds. The first threshold is to verify that
hi+1 and hi+2 have a similar value. We have used a maximum
difference of 10%. The second threshold is to verify that hi

or hi+3 are not much smaller than hi+1 + hi+2. A maximum
difference of 30% has been used for this condition. The
experiments show that these thresholds are appropriate.

TABLE I: Experimental results for Ni et al.’s method [11]

Results Specific Generic
Successful 85.19% 85.22%
Positive 40.29% 44.93%
Negative 44.89% 40.29%
False positive 5.10% 9.70%
False negative 9.70% 5.06%

The results are shown in Table I. The row “Successful”
refers to the percentage of correctly identified images (either
as cover or stego), the row “Positive” reports the percentage of
the correctly identified stego images (the maximum is 50%),
“Negative” reports the number of correctly identified cover
(unmarked) images (again, the maximum is 50%), “False
positive” reports the percentage of cover images incorrectly
identified as stego and, finally, “False negative” is the per-
centage of stego images which are not correctly detected by
the technique. Note that the number of positives plus false
negatives equals 50%. Analogously, the number of negatives
plus false positives also equals 50% of the total number of
images.

It can be observed that both the specific and the generic
methods correctly identify more than 85% of the images. The
specific scheme has a higher percentage of false negatives,
whereas the generic one has a higher ratio of false positives.

B. Mohsenzadeh et al.’s Method

For For Mohsenzadeh et al.’s method with Algorithm 1, the
specific algorithm described in Section II-B does not need any
threshold, just analyzes the shape of the histogram as shown
in Fig.2.

TABLE II: Experimental results for Mohsenzadeh et al.’s
method [10] – Algorithms 1 and 2

Results Algorithm 1 Algorithm 2
Specific Generic Generic

Successful 90.99% 81.65% 90.18%
Positive 42.19% 41.35% 49.89%
Negative 48.79% 40.29% 40.29%
False positive 1.23% 9.70% 9.70%
False negative 7.76% 8.64% 0.10%

The results shown in Table II for Algorithm 1 indicate
higher scores for the specific algorithm, but the generic
method also yields remarkable results. For Mohsenzadeh et
al.’s method with Algorithm 2, only the generic algorithm has
been applied, since the exact position of the neighboring pixels
used to embed data is protected by means of a secret key and
cannot be used by a specific attack. The results, which are
shown in the same table, indicate a large ratio of success using
the generic algorithm. In addition, in this case, the reliability
of the detection of positives is remarkable, with a 49.89% of
success for a maximum of 50%.

C. HSPE Methods

For detecting HSPE methods, the specific algorithm pre-
sented in Section II-C has been used with a threshold of 15%.
This means that an image is considered stego if its volatility
decreases less than 15% when embedding a new message,
otherwise it is considered cover. The experiments show that
this threshold is appropriate.

Table III shows the results for HSPE steganography with
five different prediction equations: horizontal, vertical, diago-
nal, causal and MED. As horizontal prediction is concerned,
both the specific and the generic methods obtain similar
success ratios, with somewhat better results for the generic
one. The same goes to the results for diagonal prediction
errors, with an almost identical performance for both methods
and a small difference in favor of the generic one. For vertical
prediction errors, it can bee seen that the success ratios are,
again, similar with both methods, but this time the results are
slightly better for the specific one.

As causal prediction is concerned, the results of Table III
show that the specific method is particularly unsuitable for
this embedding technique using the same thresholds as for
the other HSPE methods. By modifying the threshold of the
specific method slightly, success ratios of above 80% can be
obtained, but this also increases the number of false positives.
Finally, when MED prediction errors are used, the results
are analogous to those obtained with causal prediction errors.
Again, the successful identification ratio with the specific



TABLE III: Experimental results for HSPE data hiding

Results Horizontal Vertical Diagonal Causal MED
Specific Generic Specific Generic Specific Generic Specific Generic Specific Generic

Successful 86.94% 87.16% 88.84% 87.19% 87.52% 88.65% 61.19% 86.10% 63.78% 85.88%
Positive 43.47% 46.86% 45.36% 46.90% 44.05% 48.35% 17.72% 45.80% 20.31% 45.58%
Negative 43.47% 40.29% 43.47% 40.29% 43.47% 40.29% 43.47% 40.29% 43.47% 40.29%
False positive 6.52% 9.70% 6.52% 9.70% 6.52% 9.70% 6.52% 9.70% 6.52% 9.70%
False negative 6.52% 3.13% 4.63% 3.09% 5.94% 1.64% 32.27% 4.19% 29.68% 4.41%

technique could be improved over 80% by modifying the
thresholds at the price of increasing the false positive ratio.

D. Mixed Experiments
In this section, an experiment was performed with 1000

cover and 1000 stego images. The set of stego images contains
a mixture of all the presented methods in equal parts. I.e.,
the 1000 stego images are marked using Ni et al.’s method,
Mohsenzadeh et al.’s Algorithms 1 and 2, and HSPE with
horizontal, vertical, diagonal, causal and MED predictions.
Hence, eight different embedding methods are used and 125
images are embedded with each method.

TABLE IV: Experimental results for different mixed histogram
shifting data hiding methods

Results Generic
Successful 86.05%
Positive 46.15%
Negative 39.90%
False positive 10.10%
False negative 3.85%

As shown in Table IV, the generic algorithm for a mixture
of histogram shifting data hiding schemes yields a successful
classification ratio of above 86%.

IV. CONCLUSIONS

In this paper, we have shown that histogram shifting-based
data hiding schemes cause alterations in the image histogram
and that these alterations can be detected. We have introduced
a technique, based on the analysis of the histogram’s volatility,
which can be applied to several data hiding methods. The
experimental results show that the analysis of the histogram’s
volatility can be used to detect relevant changes in the his-
togram, and that the analysis of the histogram of differences
provides remarkable results, being able to identify between
80% and 90% of the test images correctly as cover or stego.

As future work, it would be advisable to study the use of
other histograms to estimate volatility, as well as exploring the
applicability of this steganalytic technique to other data hiding
schemes.
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