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Abstract—Linear Consistency Test (LCT) is a well-known
algebraic method of cryptanalysis of stream ciphers. In this
paper, we use LCT in an attack on a noised irregularly clocked
linear feedback shift register (LFSR). We show that it is possible
to reconstruct the initial states of both the clocked and the
clocking LFSR in this scheme by using an essentially algebraic
attack method, such as LCT, as a building block in an attack
scenario with noise, which is a correlation attack by its nature.
An advantage of the attack compared to other attacks against
the same scheme is in the fact that it is not necessary to use
search in the initial state reconstruction of the clocked LFSR,
which significantly improves the efficiency of the attack. It is
shown experimentally that the attack is successful for moderate
levels of noise in the system.

I. INTRODUCTION

Irregularly clocked linear feedback shift registers (LFSRs)
have become usual primitives in many pseudorandom se-
quence generators due to their good cryptographic properties:
long periods, high linear complexities, good statistical prop-
erties etc. [2]. In a scheme of this kind, a clocking LFSR,
LFSRs, produces the decimation sequence that determines
which of the bits generated by the clocked LFSR, LFSRu,
will be skipped/sent to the output, see Fig. 1. It is well known
(see for example [5]) that such generators are vulnerable to
generalized correlation attacks, i.e. attacks exploiting existence
of generalized correlation between the noised output sequence
and some internal sequences. Generalized correlation in this
case means that there exists an initial state of the clocked
LFSR that produces the output sequence without irregular
clocking, whose so-called edit distance (see for example [10],
[12]) to the output sequence is less than a threshold given in
advance.
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Fig. 1. An irregularly clocked LFSR

By means of the generalized correlation attack it is possible
to reconstruct the initial state of the clocked register LFSRu.
The next step is to reconstruct the clocking sequence and
consequently the initial state of the clocking register LFSRs.
There are several ways to achieve this (see for example [3],
[7], [11], [14]). In any case, the total time complexity of the
attack reconstructing the initial states of both the clocked and
the clocking LFSR of the scheme depends on the lengths of
both registers.

Algebraic attacks against pseudorandom generator schemes
employing irregularly clocked LFSRs have been described as
well. To launch an algebraic attack, the output sequence of
the pseudorandom sequence generator must be known, which
means that a known-plaintext attack scenario is considered.
This scenario is not very realistic in the stream cipher en-
vironment, since the sequence that is usually intercepted by
the cryptanalyst is the ciphertext sequence, which is a noised
version of the output sequence of the generator.

A typical algebraic attack used in the known-plaintext attack
scenario is the attack employing the Linear Consistency Test
[13]. LCT is a key recovery attack, which uses some guessed
bits from the internal state of a pseudorandom sequence
generator to determine the unknown bits of the key and to
accept or recject the guessed initial state. The LCT procedure
is as follows: First, a candidate subkey is guessed. Then
a system of equations parameterized by this subkey is set
up. If the candidate subkey coincides with the very subkey
used in generating the intercepted sequence, then this set of
equations will be consistent. But if the candidate subkey is
not the subkey used then, by a theorem proved in [13], the
consistency probability of the system will be very small if the
intercepted sequence is long enough. The consistency of the
system of equations is tested for all the possible choices of the
candidate subkey, and the right subkey is detected whenever
the corresponding system is found to be consistent.

The system of equations can be solved for example by
means of the Gaussian algorithm. In [8] and [9], a version of
LCT with improved efficiency is described. The improvement
is achieved by using low-weight cyclic equations instead of the
Gaussian algorithm to check for consistency of the obtained
system of equations.

In this paper, we apply the Linear Consistency Test in a



ciphertext-only attack scenario, where the output sequence
of the pseudorandom sequence generator employing irregular
clocking is noised (in practice it usually means that it is bitwise
summed modulo 2 with the plaintext sequence) and the noised
sequence is intercepted by the cryptanalyst. We show that the
initial states of both LFSRs and LFSRu can be reconstructed
in the presence of noise and that the time complexity of the
attack depends only on the length of LFSRs, unlike all the
other known attacks on such schemes.

The structure of the paper is as follows: In Section II,
we describe the particular pseudorandom sequence generator
employing irregular clocking analyzed in this paper. Then, in
Section III we give the details of the ciphertext-only attack. In
Section IV, the experimental results obtained on the analyzed
generator with several different parameters are given. Section
V concludes the paper.

II. THE ANALYZED GENERATOR

Irregular clocking is realized in practice in several ways.
Examples are the Binary Rate Multiplier [2], the Shrinking
Generator [4], the Alternating Step Generator [6] etc. In this
paper, we apply the ciphertext-only attack employing LCT on
the Binary Rate Multiplier (BRM). The attack is applicable
on the other generators employing irregularly clocked LFSRs
as well.

The Binary Rate Multiplier consists of 2 LFSRs, the clock-
ing LFSR, LFSRs and the clocked LFSR, LFSRu, where the
clocking of the LFSRu is determined by the integer decimation
sequence produced by k positions of the LFSRs, see Fig. 2.{k positions

LFSR LFSRs u
clock

Fig. 2. The Binary Rate Multiplier (BRM)

The binary rate multiplier can be viewed at as a black box,
see Fig. 3. The binary sequence un is the output sequence
of LFSRu without irregular clocking. The integer sequence
sn is determined by the k positions of LFSRs. The maximum
value of a symbol from this sequence determines the maximum
number of bits from the sequence un that can be skipped in the
decimation process. The binary sequence zn is the decimated
binary sequence un, which is the output sequence of the whole
BRM.
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Fig. 3. Operation of the Binary Rate Multiplier, see text

The output sequence zn is obtained in the following way:

zn = ug(n) (1)

where

g(n) = n+

n∑
i=0

si (2)

In [2] it is shown that the maximum linear complexity
achievable with BRM is luPs, where lu is the length of LFSRu

and Ps is the period of LFSRs. This linear complexity is
achieved if the lengths of LFSRs and LFSRu are equal and
both LFSRs have primitive feedback polynomials. Since it is
relatively easy to obtain sequences of high linear complexity
by means of BRM, this scheme has found many applications
in the design of stream ciphers.

III. ATTACK DETAILS

In [13], the following theorem was proved:
Theorem 1

Let A = [aij ] be an m × n random binary matrix with
entries satisfying, independently from each other, the distri-
bution Prob(aij = 0) = 0.5. Let b be any given non-zero
binary vector of dimension m, m > n. Then the probability
for the linear system Ax = b to be consistent is

Prob(Ax = b is consist.) <
1

2m−n

(
1 +

1

2m+1

)n

. (3)

�

Obviously, if m is large enough, the consistency probability
of a random system as above is very small. This result is
applied in the Linear Consistency Test (LCT) in cryptanalysis.
Let us fix a subkey K1 of the key K of a pseudorandom
sequence generator, | K1 |<| K |. If the design of the
analyzed generator is such that a linear system parameterized
by the subkey K1 can be assigned to it, then it is possible to
reconstruct the bits of K1 by means of the following procedure
(the LCT):

1. Guess a value for K1.
2. Set up a linear system A(K1)x = b such that A(K1) is

determined by the analyzed generator and b is determined
by the intercepted output sequence of the generator.

3. Check the consistency of the obtained system. This can
be done in many ways, for example by means of the
Kronecker-Capelli theorem and Gaussian elimination for
determining the rank of the original and the extended
matrix of the system. If the system is consistent then the
guess of K1 is certainly right. If the system is inconsistent
then by Theorem 1 the probability that the guess of K 1

is still right is very small.
4. We guess other values for K1 until we get a consistent

system. Then we can reduce the dimension of the system
by |K1 |, define another subkey to guess, repeat the whole
procedure until we reconstruct all the bits of the key K .



It is shown in [13] that the number of equations in the
parameterized system should exceed |x | + |K1 | significantly
in order to reduce the number of false consistency alarms to
a small value. Then the solution of the system will be unique
with probability very close to 1.

The key step in the attack is to determine the system of
equations that is linear. Interestingly enough, a linear system
suitable for application of LCT is easily assigned to a pseu-
dorandom generator employing irregularly clocked LFSRs, as
shown in [8], [9]. There it is also shown that the LCT can be
significantly speeded-up by using low-weight cyclic equations
determined by the feedback polynomial of the LFSRu, which
eliminates the need for Gaussian algorithm.

The linear system assigned to a BRM is obtained by
guessing the initial state of the LFSRs. Let ls and lu be the
lengths of LFSRs and LFSRu, respectively. If ls initial bits of
LFSRs are guessed and the corresponding output sequence sn

of LFSRs is generated, that sequence determines the positions
of the skipped bits from the output sequence un of LFSRu

without irregular clocking. Since the output sequence zn of the
BRM is known, i.e. intercepted, and the feedback polynomials
of both LFSRs and LFSRu are known, by guessing the initial
state of LFSRs we obtain a linear system of equations in lu
unknowns, whose consistency is to be checked by means of
the LCT.

The attack described above is a pure algebraic, i.e. known
plaintext attack. If the plaintext is not known to the cryptana-
lyst then the only information available to him is the ciphertext
sequence and the feedback polynomials of LFSRs and LFSRu.
In that case, the intercepted bits represent the output sequence
from the BRM degraded by a noise sequence (plaintext here
is considered noise). For lower probabilities of ”1” in the
noise sequence, it is then possible to iterate the LCT with the
same guess for the initial state of LFSRs, starting building the
system of equations from another position in the intercepted
ciphertext sequence each time. In such a way, the output bits
of BRM degraded by the noise will not be present on the
right-hand side of the system of equations if the number of
LCT repetitions is high enough for each guessed initial state
of LFSRs.

The discussion above gives rise to the following ciphertext-
only attack against pseudorandom generator schemes employ-
ing irregular clocking in general and BRM in particular:

1. Guess the initial state of the clocking sub-generator.
2. Generate the corresponding output sequence of the
clocking sub-generator.

3. Repeat N times, N odd, each time starting from the
next bit of the intercepted ciphertext sequence (the first
time we start from the 1st intercepted bit) in the proces
of building the linear system:

3.1. Build the system of linear equations.
3.2. Test the consistency of the obtained system.
3.3. Update the number of cases where a consistent

system was obtained.

4. If in the majority of the linear consistency tests a

consistent system was obtained, the guessed initial state
of the clocking sub-generator is accepted.

Example
Suppose we use a BRM with 0/1 clocking (k = 1, see

Fig. 2), where the feedback polynomial of LFSRs is fs(x) =
1+x+x4 and the feedback polynomial of LFSRu is fu(x) =
1+x3+x4. The clocking signal is taken from the 1st position
of LFSRs. If the initial state of LFSRs is 0101 and the initial
state of LFSRu is 1100, we get the following sequences in the
BRM:

s = 110010001111010 . . .
u = 010111100010011 . . .
z = 1111000101 . . .

If the cryptanalyst guesses the initial state of LFSRs right
(i.e. he guesses the state 0101 for LFSRs), he gets the
following sequence û containing variables representing the
skipped bits from u in the process of irregular clocking in
the BRM:

û = x11x2111x30001x40x51 . . .

From the sequence û and the feedback polynomial fu, we
get the following system of (parity check) equations:

x1 + 1 = 1 1 + x2 = 1 x2 + 1 = x3

1 + 1 = 0 1 + 1 = 0 1 + x3 = 0
x3 + 0 = 1 0 + 0 = x4 0 + 0 = 0
0 + 1 = x5 1 + x4 = 1 . . .

The obtained system is consistent and we conclude that the
cryptanalyst’s guess of the initial state of LFSRs was right.

Suppose now that the cryptanalyst only has access to
the ciphertext and that in addition he knows the feedback
polynomials LFSRs and LFSRu. Then instead of the sequence
zn the cryptanalyst intercepts the sequence z ′

n, which is zn
degraded by noise. The noise sequence is a random binary
sequence, in which the probability of ”1” is less than 0.5. In
this particular example, suppose that the 2. and the 8. bit of the
sequence z were changed by the noise. Then the intercepted
sequence z ′ is

z′ = 1011000001 . . .

and the sequence û′ containing variables representing the
skipped bits from u in the process of irregular clocking in the
BRM:

û′ = x11x2011x30000x40x51 . . .

From the sequence û′ and the feedback polynomial fu, we
get the following system of parity check equations:

x1 + 1 = 1 1 + x2 = 1 x2 + 0 = x3

0 + 1 = 0 1 + 1 = 0 1 + x3 = 0
x3 + 0 = 0 0 + 0 = x4 0 + 0 = 0
0 + 0 = x5 0 + x4 = 1 . . .

The obtained system is obviously inconsistent, even though
the cryptanalyst’s guess of the initial state of LFSRs was right.
To overcome this, we try starting building the system from the



2. intercepted bit, the 3. and so on N times and each time we
check the consistency of the obtained system of parity check
equations. If in the majority of attempts to build a system we
get a consistent system, we accept the guessed initial state of
LFSRs as the right one.

�

IV. EXPERIMENTAL WORK

In [1] it was observed that if the guess of the initial state of
LFSRs is wrong, the number of consistent systems obtained
with N LCT iterations, as shown in Section III, is zero with
high probability. On the other hand, if the guess of the initial
state of LFSRs is right, the probability of getting a consistent
system in the majority of N LCT iterations is high, but it still
may happen that we get a low number of consistent systems or
even 0 consistent systems even though the guess of the initial
state of LFSRs is right. In that case, it is worth increasing the
value of N and consequently using more intercepted ciphertext
bits to build the system, as it was also shown in [1].

The goal of the experiments was to show that by increasing
the number of LCT iterations N , the probability of getting
0 consistent systems when the guess of the initial state of
LFSRs is wrong remains at a high level and the probability of
getting 0 consistent systems when the guess of the initial state
of LFSRs is right decreases significantly. To this end, for the
lengths of 4 and 7 (equal lengths of LFSRs and LFSRu) the
following experiments were performed:
Experiment 1

In this experiment, we use the right guess for the initial
state of LFSRs and we determine the minimum value of N
for which we get the number of consistent systems equal to
0, for each of the lengths of LFSRs given above and for the
probabilities of ”1” in the noise sequence of 0.1 and 0.15.
The results were obtained on the fixed (correct) initial state of
LFSRs and 1000 random combinations of altered output bits
from the BRM by the noise for LFSRs of length 4, and 100
for LFSRs of length 7. The results are presented in Fig. 4 –
7.
Experiment 2

In this experiment, we use a wrong guess for the initial
state of LFSRs and we observe the percentage of the cases
in which we get the number of consistent systems equal to
0, for each of the lengths of LFSRs given above and for the
probabilities of ”1” in the noise sequence of 0.1 and 0.15. The
results were obtained on the fixed (incorrect) initial state of
LFSRs and 1000 random combinations of altered output bits
from the BRM by the noise for LFSRs of length 4, and 100
for LFSRs of length 7. The results are presented in Fig. 8 –
11.

From the figures presented above we can observe that
with the increase of N the probability that the right guess
of the initial state of LFSRs will be detected increases and
after certain threshold value of N this probability becomes
very close to 1. The threshold grows with the lengths of the
LFSRs in the BRM as well as with the noise level. We also
observe that the increase of N does not practically affect the

Fig. 4. Right guess detection accuracy (see text); p = 0.1, ls = 4

Fig. 5. Right guess detection accuracy (see text); p = 0.15, ls = 4

Fig. 6. Right guess detection accuracy (see text); p = 0.1, ls = 7

Fig. 7. Right guess detection accuracy (see text); p = 0.15, ls = 7



Fig. 8. Wrong guess detection accuracy (see text); p = 0.1, ls = 4

Fig. 9. Wrong guess detection accuracy (see text); p = 0.15, ls = 4

Fig. 10. Wrong guess detection accuracy (see text); p = 0.1, ls = 7

Fig. 11. Wrong guess detection accuracy (see text); p = 0.15, ls = 7

probability of detection of a wrong guess of the initial state
of LFSRs. This probability is always very close to 1.

The experimental results presented above indicate that the
iterative use of LCT in the ciphertext-only attack presented in
Section III gives practically useful outcome of such an attack
for small to moderate levels of noise.

V. CONCLUSION

In this paper, a new ciphertext-only attack on pseudorandom
sequence generator schemes employing irregularly clocked lin-
ear feedback shift registers is presented. The attack makes use
of Linear Consistency Testing (LCT), a well known algebraic
attack method, in an attack that is essentially a correlation
attack. It is shown experimentally that the attack is successful
if the level of noise in the statistical model of the scheme
is moderate. An advantage of this attack compared to other
attacks against this class of pseudorandom sequence generator
schemes is the fact that it is not necessary to reconstruct the
initial state of the clocked LFSR by search, which significantly
improves the efficiency of the attack.
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